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The fluid limit of a recently introduced family of nonintegralffeonlineaj continuous-time random walks is
derived in terms of fractional differential equations. In this limit, it is shown that the formalism allows for the
modeling of the interaction between multiple transport mechanisms with not only disparate spatial scales but
also different temporal scales. For this reason, the resulting fluid equations may find application in the study of
a large number of nonlinear multiscale transport problems, ranging from the study of self-organized criticality
to the modeling of turbulent transport in fluids and plasmas.
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I. INTRODUCTION K(k,9) = s9)p([1 - fS)] L. (3)
Continuous-time random walkcCTRWs have found a This CTRW/GME formalism can be used to model the

wide range of applications in physics since their introductionyansport properties of many systems, once appropriate forms
almost 40 years agfl]. These generalizations of the stan- for p and y are chosen that capture the relevant physics of
dard (discret¢ random walk are defined in terms of two the mechanism that governs transport in them. Thanks to the
probability density functiongpdf’s): p(x—x’), that gives the  central limit theorenf7], it is in many cases sufficient thet
probability of the walker moving frox’ to x at timet, and  be an exponential andla Gaussian. The “fuid limit” of such
Y(t-t'), that gives the probability of having waited>dtand ~ CTRws [in which only those details pertinent to the long-
amount of timet—t’ before moving tox. Such CTRW is time, long-distance system dynamics are kept in Etjsor

readily “integrated.” That is, it is possible to derive a formal (3)] corresponds then to the usual diffusive equafi®s:
expression for the probability of the walker being«adt time

t, n(x,t). This quantity is also referred to as thalker den- an _ Dﬂz_n 4)
sity. The derivation exploits the spatial invariance mx o

-x") and the temporal invariance @f(t-t’), to solve for-
mally for the Laplace-Fourier transform of the walker den-
sity (in what follows, any quantity will be represented by the
same symbol that its Fourier and/or Laplace transforms, buftu
they can still be distinguished by their argumestandk are
used, respectively, as Laplace and Fourier variabiekich
happens to bgl-3]

n(k,s) = no(K[1 = ¢(s) K1 = p(s)p(K) T} 7, (1)

where nyg(k) is the Fourier transform of the initial walker ) )
density. Laplace-Fourier inversion of the Montroll-Weiss N contrast to what Eq(4) predicts (v=1). Transport is
equation[Eq. (1)] completes the integration, providing with termed either “superdiffusivel»>1) or “subdiffusive” (v

the walker density for all andx. It is also straightforward to < 1). Integrable CTRWs can still be used to describe trans-
prove that this CTRW can be mapped to the following gensPort in many of these cases, bytand p must be chosen

for a value of the diffusion coefficierd that is determined
uniquely by the chosen distributions.

But the applicability of integrable CTRWSs surpasses dif-
sive systems. Experiments have shown that, in many sys-
tems of physical, chemical, and biological interest, the vari-
ance of the walker displacement from some initial point
increases with time g$,8-15

X=Xyt v#1, (5

eralized master equaticiGME) [4-6]: instead(with certain restrictions that will be made precise
. - laten from within the family of stable Levy distributionsee

an(x,t) :f dt’ f AXK(x = X't = t)n(x’t') Appendix A). This family of pdf's, usually denoted by

ot 0 . Pra.5,01(Y), satisfies a generalized version of the central limit

oo theorem that does not require that the pdf's decay exponen-
- n(x,t’)J dxX'K(x = X't —t’)), (2) fially at large values of the argumefit6,17. It contains, as
special cases, the Gaussian distribution der2, S=0, and
) i i ) , the exponential distribution foir=1, =1 (the latter is not
where spatial and tempor_a_l invariance are again exploited tQtrictIy contained, but exists as a weak limit wher> 1 for
show that the GME transition kel must be chosen as 51 [1g)). A fluid limit also exists for these CTRWSs, but it
must be expressed instead in terms of fractional differential
operatord 8,9]. In spite of the somewhat esoteric nature of
*Corresponding author: rsanchez@fis.uc3m.es these operatorésee Appendix B efficient algorithms exist
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that can be used to integrate them numerically for most ap- P(X =X, X", t) = Ny (X', ) Pp, g o7 (X = X')
plications[19-23. , ,
Regretfully, there are many other transport problems of +No(X' )P 0,0 (X = X), (7)

interest that take place in systems where spatial invariance iﬁhere we have arbitrarily assumed that the first process is

absent. “Integrable” CTRWs then become useless since ﬂ‘& e : ;

i ) . perdiffusive(i.e., characterized by a Levy pdf wiila<<2)
MontroII-We_lss _equqnorﬁ_Eq. (1)1 ceases to be V"_i“d' An ex- while the second is diffusivécharacterized by a Gaussjan
ample of this situation is provided by the motion of tr_ace_r-l-he two “projectors’, A, can be defined arbitrarily, as long

'hs they satisfyat all locations and timespositiveness and
which bulk rotation or shear velocity fields are present y b ¢

[24,25. The problem then becomes strongly inhomoge- NG + Ao(x,t) = 1. (8
neous. Still more dramatic is the case in which several trans- i . f licati ider th f
port mechanisms or channels exist that can be switched o/ /S @n illustration of application, consider the case of a

off by some threshold condition. The system is then not onl _OC system_with added diffusid80]. In it, the superdiffu-
inhomogeneous, but stronghyonlinear as well. Many ex- sive mechanisndi.e., the avalanche¢gakes over the local

amples of this situation can be found in fluids and plasma§°mr°| of transport above some prescribed critical gradient

when turbulence is still not fully developed but instead, in_value. Then), and); should be given by
stability bursts appear whenever some critical local threshold dn

is overcome 26—30. For instance, in a hot plasma confined A(x,t) = H( ‘ d—(X,t)
in a tokamak, the confined plasma pressure is known to be X
limited by pressure-gradient-driven instabilitig®l]. These with H(x) the usual Heaviside step function. On the other
instabilities are excited when the pressure gradient becoméfand, in the case in which the diffusive channel remains
larger than a certain critical value set by the local conditionsactive (but subdominantwhen the profiles values overcome
and magnetic field, giving rise to strong, apparently nondif-the local critical gradienf42], we should use instead

fusive, transpor{32-34. Other examples can be found in B

the realm of self-organized-criticalitfsOQO [35-37, where N (X, 1) = Nq(X, 1) + eny(X,1),

a superdiffusive transport mechanigie., the avalanchegs
becomes active only when some threshold condition is met. ~ _
This appears to be the case, for instance, in earthquake dy- A% 1) = (1 - €a(x,D), (10
namics[38] (where the threshold condition is given by the where,,\, are the same functions defined in E@) and
maximum stress that a given tectonic plate can bear withouijhere the arbitrary parameter<QGe<1 sets the relative
displacing or in the transport of magnetic flux quanta in strength of the diffusive channel with respect to the superdif-
superconductor39] (where the threshold condition is given fusive one when the system is locally supercritical. Many

by the depth of the local pinning potential other cases could be also addressed by choosing the appro-
In a recent series of papef40,41, we proposed an ex- priate form for the projectors.

tension of the standard integrable CTRW framework that can  The interesting feature of all the CTRWSs defined by Eq.
accommodate not only inhomogeneous cdseRef.[24], a  (7) is that they can keep active some sort of system memory
less gene_ral CTRW than the one pre.sentEd here was derivmrough the non”nearity hidden |N](X’ ,t)], which makes
to treat this casebut also many nonlinear ones. The exten-that the shape of instantaneous slope profile that has been
sion is based on the observation that the class of CTRWSs thagved by past events may affect the system later evolution.
can be mapped to a GME is larger than that of the integrabl@ng this happens even if the CTRW is constructed to be
CTRWSs. It also includes all nonintegrable CTRWs with aparkovian in time by choosings exponential. For this rea-
step-size pdf of the fornp(x—x", h(x’,t)), whereh is any  son, the choices provided by Eq3) and (9) have already
(nonlineay arbitrary function of the form proved extremely useful in the investigation of several as-
pects of transport in systems governed by SOC dynamics
g & [41], also, in the study of particle turbulent transport in plas-
PP R o | L PN 1l | PP mas confined in a tokamak or a stellarafté,43.
hO<,t) = f(x LG, dx(x V. dxz(x Y ) © However, the present formulation of the extended CTRW/
GME is based on an important assumption that is not always
justified in practice: that all transport mechanisms share the
Therefore the step-size pdf may now contain arbitrary nonsame temporal dynamics and characteristic scales in the
linearities and/or inhomogeneities through the functlon sense that the same waiting-time pffs used at all times
which means that the next step size that the walker choosésdependent of which transport channel is active. For in-
at timet may dependeven nonlinearlyin a Markovian way stance, coming back to the example of a magnetically con-
on any local(i.e., defined ak’ at timet) quantity. fined plasma, it is well known that the two transport channels
This extended CTRW can easily address the study of th#éhat set the dynamics of particle and energy transport in these
afore-mentioned nonlinear interaction between multipleplasmas—collisional diffusion and turbulence—have differ-
transport mechanisms. For instance, assuming for simplicitgnt associated time scales. In particular, both time scales can
that only two channels are present, it would be sufficient tachange very differently when external parameters such as the
choose the following step-size pdf: plasma temperature or the strength of the magnetic field are

‘Zc(X)), A=1-XN;, (9
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varied [44]. Similar examples are also common in many From Eq.(15) it is clear that, ifp and ¢ would not depend
other fields of physics and chemistry. In this paper we willexplicitly on h, Q(q,s) would be readily available via a
show that this shortcoming can be easily removed by movingrourier-Laplace transformation. However, in the case of our
to the fluid limit of the extended CTRW/GME framework, a CTRW, Q(x,t) may depend om(x’,t) (through the function
fact that widens importantly its range of application to realh), and the standard approach from REd] is no longer
systems. applicable. The CTRW under consideration is therefore
The paper is then organized as follows. In Sec. I, we“nonintegrable” due to the presence of the nonlinearity.
review the derivation of the GME associated to the noninte- To derive the GME associated with this CTRW we must
grable CTRW. Then, after reviewing briefly how the fluid establish the link to the CTRW the link through E@5)
limit is taken for the case of integrable CTRWSs in Sec. Ill, instead. We start by introducing an auxiliary function in
we proceed to calculate the fluid limit of the nonintegrablelaplace space,
case in Sec. IV. Next, in Sec. V, we show how the limitations

of the extended CTRW/GME mentioned in this section dis- d(X;8) = h(x;9) n(X;9), (16)
appear in this limit. Finally, some conclusions are drawn in
Sec. VL. that allows us to rewrite Eq15) as
Il. NONINTEGRABLE CTRWS: DERIVATION * , , ,
OF THE GENERALIZED MASTER EQUATION Qx;t) —dx)at) = | dx'p(x=x', h(x";t))
In this section, we will show that the family of CTRWs ¢
that_have an associated GMI_E is not limited to those Which Xf dt' (X' ;t—t)n(x',t'), (17)
are integrable, but also contains the class of CTRWs defined 0

by the joint step-size, waiting-time pdf given ky=p(x’
-x",h(x’,t)) with h given by Eq.(6) [40,41]. The existence after transforming the temporal convolution in the right-hand
of such a GME is essential to take any kind of fluid limit, side(rhs) of Eq. (15) with the help of the Laplace transform
since a closed expression fiags, k) like that provided by Eq.  L[-]:
(1) is no longer available in this case. .
The difficulties of proving that a GME can be associated r T g 't
to this CTRW become clear when trying to “integrate” it L(fo At y(x’;t - 1)Kt )>
along the lines outlined in Sec. I. First, we express the prob-
ability of finding the walker a$2] = (X', 9)Q(X',8) = p(X',9)n(X’,s)

t t
n(x,t):f p(x;t=t)Q(x;t")dt’, (11) :L<f dt'¢(x';t—t’)n(x’;t’)), (18)
0

0

where 7(x;t-t") represents the probability that the walker, where we have also used Ed.3). Next, we Laplace trans-
located atx’ at timet’, still remains in the same position at form Eq. (17), multiply the result bys»(x;s), and use Eg.
time t: (13) (after adding and subtracting(x)] to obtain

(X, 7) = deT'lﬁ(T',X)_ (12 [sn(x,s) = 8(x)] = 8(X)[sn(x;s) — 1] = su(X;9)g(X;S),
0 (19
Q(x;t) represents the total probability of the walker arriving

at positionx at time t by any possible route. Next, we
Laplace transform Eq11) to get

whereg(x,s) stands for the Laplace transform of the rhs of
Eq. (17). g(x,s) is eliminated by combining the Laplace
transform of Eq.(17) with Egs.(14) and(16) to get

n(x,s) = 7(x;9)Q(x;s). (13
The Laplace transform ofy(x,t—t’) is trivially obtained in g(x;s) = X)x;s) - qﬁ(x,s)n(x,s). (20)
terms of (s, x) by Laplace transforming Eq12): [s7(x;s) — 1]

s7(%,9) = 1 — (S, X). (14) After inserting this expression fog(x,s), Eq. (19) is

_ o _ _ Laplace inverted to yield the final GME we sought:
RegardingQ(x;t), it satisfies the recursive equation as shown

i f.[2], t t

in Re [2] ) % - _f dt’¢(x;t—t’)n(x,t’) +f dt’
Q(x:t) - SX) 8(t) = f dx' p(x - X', h(x': 1) ° °

_mt Xf dx' ¢(x";t=t")p(x—x', h(x’;t)n(x’,t").

XJO dt’ ¢(x";t-t")Q(X';t"), (15 21)

that only assumes that the walker is initially locatedxat The resulting GME transition kernel in EQ1) is thus
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KX, t,t") = (X"t =t")p(x = X', h(x";t)), (22) of long times(in Laplace spaces—0) in ¢(s). This reduces

to approximating Eq(23) as
that reduces to the usual transition kernel given by (Bpif PP 9 Eq23)

spatial invariance is again assumed by disregarding any pos- o
sible dependence dmx’,t). The functiong(t—t’) is usually p(k) =1 -o*k|*| 1 -iB sgn(k) tar(;) . (26)
known as thememory functiorsince it becomes a delta func-

tion only when the CTRW is Markoviap5]. and approximating the Laplace transform of positive ex-

tremal Levy pdf’s, given by Eq(A6), by
Il FLUID LIMIT OF INTEGRABLE CTRWS ~1-A"1
Y(s)=1-A TS (27)

As we mentioned in Sec. |, fluid limit means that all de- h h Iso included th ial lawsfl and
tails of the CTRW that are irrelevant at very large temporaIW ere we have also included the exponential law1 an
defined the constant

and spatial scales are neglec{&46-50. Mathematically,
this limit can be taken either on the Montroll-Weiss equation -
cod %), y<1
1, y=1

After inserting Eqs(27) and(26) in Eq. (1), the fluid limit
&f the Montroll-Weiss equation becomes

[Eq. (1)] or on the associated GMEEQ. (2)]. In this section, A =

, (28)

we collect some well known results regarding this calcula-

tion that will be useful when addressing the calculation of

the same limit for the nonintegrable case in Sec. IV.
Before proceeding, a few comments are appropriate abo

the adequate choices for waiting-time and step-size pdf’s. As

we said in Sec. |, the generalized central limit suggests that n(s,k) = no(k){s+ Cla, y)s k|

both should be chosen from within the family of stable Levy

distributions[16]. The only details about these distributions o -1

that are of concern at this stageee Appendix A for more x{l —-iBsgnk) tar<—)} , (29

detailg are that they can be defined in terms of their Fourier

transform{17] where the coefficienC(a,y)=A,0%/ 7" has been defined.

Equation(29) can be rewritten as
Paﬁ,g(k):ex;{— a|k|a[1—i,6’sgr(k) tar(w—za)]}' q (29
sn(s,k) — ng(k) = = C(a, y)s' 7|k[®
(23 n(s,k) = no(k) (a,7)s" 7K
. ryes

with @€ (0,2], |8/<1 and 0<o <= (the meaning of each x{l—l,@sgr(k) tal‘(;)]n(&k)-
label is discussed in Appendix)AUsually, one can choose
any stable Levy pdf as step-size pdbte that the choicer (30)
=2, B=0 is the Gaussian pgfbut waiting-time pdf's can . . ) )
only be defined for positive lapses of tinfee., for t-t'  After using the identity Eq(B7), Eq. (30) can be Fourier
=0). For this reason, they must be chosen within the sublinverted by introducing the two Riemann-Liouville fractional
family of Levy pdf's known aspositive extremal distribu- differential operators defined by EdB2), which satisfy
tions (a<1, B=1) [17], that are only defined for positive (19,21

values ofy (see Appendix A Also, the exponential can be N
used, since it can be shown that it is the limiting pdf when [ Jn } = (Fik)*n(K) (31)
the limit «— 1 for =1 is taken[18]. A(EX) '

Next, it is useful to introduce some notation. In what fol-
lows, the labelsx, 8,0 will always refer to step-size pdf's. F[:] represents the Fourier transform. The resulting equation
Regarding the waiting-time pdf’s, only and o are free pa- becomes thus a fractional differential equati®DE) in
rameters, sincgg=1. To avoid confusion with the step-size space:
labels, we will use insteagt (for ) and r (for o) to refer to

waiting-time labels. Therefore we will assume that the inte- Cla, y)st™
grable CTRW is defined by a waiting-time step size: Sn(s,X) ~no(X) =~ TS{%)
Yt-t') =Py 4t-t), y=<1, 0<7<o, (24 ><<(1 +,8)@ r1-p #n )
and step-size pdf: Ix* I(=x)*
P(X=X) =P pa(X=X), a<2, IBl<1, 0<o<o. (32)
(25) In order to carry out next the Laplace inversion of Eq.

(32), two choices are possible. The first one is to multiply
The fluid limit can now be taken, for instance, on the both sides bys”* and introduce the Caputo fractional differ-
Montroll-Weiss equatiofiEqg. (1)]. We only need to take the ential operatof51] [Eq. (B8)], which verifies[19,21] (for
limit of long distanced(in Fourier spacek—0) in p(k) and  y<1)
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U take the temporal part of the fluid limit of the first term on

L[a_ﬂ} = s"n(s,X) = " Ny(X), (33 the rhs of GME Eq(21), that introducing again the Caputo
¢ derivative and taking advantage of E§3), becomes
wherelL[ ] represents the Laplace transform. The result is the

t
FDE in space and time: f dt' p(x;t—t")n(xt") =L p(9n(x,9)]
an_ Cla,y) an i
an 2—500‘)((1*3) (1_’8)3(—x)“)' =LA, s
(34 a5 tﬂndx))
A y(actl‘y+ e

A second possibility is to Laplace invert E@2) directly.
This can be done by introducing the Riemann-Liouville dif- =A,7[,Di "n]. (38)
ferential operator with start point a£0 [Eq. (B1)] [48]:

@__ 1-y (a 7)(
- 0} [2005(2)< 9T+ 1-p)

To derive this expression, use has also been mad21¢f

)} L[t"]=T(y+1)s D, (39

and of the relation between the Caputo derivative and the
(39 Riemann-Liouville derivative with start point @=0 [Eq.

The interpretation and applications of Eq84) and (35)  (B10), in Appendix B|. Doing the same with the time con-

have been discussed in detail in the literature for differenvolution appearing inside the second term of the rhs of Eq.

choices ofa and y [6,8,9,48,50,52 We will only remark  (21), we can rewrite the GME as

here that the exponent that determines the superdiffusive 0(5n(x )

subdiffusive character of transport is equalite2y/a [see  —== =

Eq. (5)]. Thus superdiffusive behavior is observed if 2  t

> a, diffusive if 2y=«, and subdiffusive if <« [8,9]. For

the choicesa=2, y=1, Egs.(34) and (35 reduce to the x[thl‘yn](x,t)}. (40)

standard diffusive equatidisee Eq(4)] with diffusive coef-

ficient D=C(2,1)=0?/ .

a( X)

—AyT_y{[thl_yn](X,t) + f " dx p(x=x', h(X";1))

Next, we take the spatial part of the fluid limit by com-

V. NONINTEGRABLE CTRWS: ELUID LIMIT pl;]tingkthe Fourier transform of E¢40) and taking its limit
whenk—0:
We will now derive the fluid limit of the GME Eq(21)
for the choices of waiting-time and step-size pdf's suggested ﬂn(k t) E AD w1
by the generalized central limit and our discussion in Sec. . ot Clay, 1A, (ki t)[kd
Regarding the same waiting-time pdf, the same choice al-
ready made in the integrable cdsee Eq(24)] will be used. _ {|k| ~ ik, tan(ﬂl)} (41)
However, we consider instead as step-size pdf the combina- ! 2 '

tion of two arbitrary stable Levy pdf’s: . .
where we have defined the quantities

X=X X", ) =N (X, OPrg. 5. o (X=X _ .
p( ) 1(X'1) lay.By, 1]( ) A](?’)(X,t) = )\j(xat)[thl yn](X,t), j=1,2. (42)

+N\o(X' )P x=x"). 36 e -
2 OPLa 01 ) (36) The diffusive coefficient€(a, y)=A, 0%/ 7 are the same as
Keep in mind that the projectobs,,\, are completely arbi- those defined in Sec. Il for the integrable cases.

trary, as long as they satisfy the conditions given by @By. The Fourier inverse of Eq41) can then be written ex-
Extension to the case witiN transport mechanisms is plicitly by introducing again the Riemann-Lioville fractional
straightforward. differential operator$Eqg. (B2), Appendix B:

A. Fluid limit in terms of FDEs an(x,t) _ _ 2 Claj,y) (( ,3)

The fluid limit must now be taken directly on the GME ot j=12 cos(ﬂ) oxa

Eq. (21), since an equation analogous to the Montroll-Weiss
equation that we used in the integrable cse Eq(29)] is +(1-By) ) AD(x,1), (43)
not available for nonintegrable CTRWSs. We proceed by first 3( X)“i .

taking the temporal part of the fluid limits—0) of the

) which should be compared with E@®5), that we obtained in
memory function:

Sec. Il for integrable CTRWSs. A first comment to be made is
s(s) o that, in the extended CTRW case, an equation with a tempo-
- A,T7s, (37)  ral fractional derivative in terms of the Caputo operator is
not available due to the presence of the nonlinearity in the
for which only Eq.(27) is required[the coefficientA, was  projectors, in contrast to what happened with B4) in the
introduced in Eq(28) in Sec. Il. We will use this result to integrable case.

o(s) =
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We finish this section by noting that the rather compli- through-profile” mechanism associated to the fi@t sec-
cated Eq(43) can be written in a more compact form if both ond) transport mechanism, which is contained in the projec-
step-size pdf’s are symmetrice., if 8;=0, [J;). Then, we  tor \y(X,t) [or Ay(X,1)]. As we already discussed in Sec. I,
can introduce the Riesz operaf@g. (B5), Appendix Bland  the previous history of the system, that has been carved in

rewrite Eq.(43) as the system profile by past transport events, can in this way
A NG affect the future system evolution.
nx.n =C(a y)a_l +C(a 7)07_2 (44) Let us look now at the non-Markovian case wigh< 1,
ot RN 27 g|x|e2 that allows us to model memory effects in a probabilistic

manner associated with the microscopic waiting-time pdf

In this case AJ(x’,t) appearing in Eq(43) is more compli-

B. Interpretation of FDEs Egs. (43) and (44) cated than just the projected density(x,t)n(x,t) that we

We proceed now to interpret each term in the fluid limitJust discussed. Writing\(x’,t) explicitly, it happens that
given by Eq.(43) in what follows. To do it, it is convenient [recall Eq.(B1), Appendix B

to sety=1 for the moment, and consider the Markovian ver- 1 d™ [ (N Nt
sion of Eq.(43): AN )= — J %dt’ :
, Fm=-1+yd™ J, @t-t)"
an(x,t) Claj,1) 9%
=-2 — sl @) “7)
ot j=1 2 Coi_ZL) dIxX“i

with m the integer part of 1. Note thatA](x’,t) may now

be nonzero even ik,(x’,t)=0 at timet. The reason is that
+(1_BJ)W INOONGDT. (49 this term collects now contributions from all past timés
_ - <t when\y(x’,t") # 0. Again, if \; represents some kind of
The rhs of Eq.(45) contains the contributions of the two instanility threshold, this would mean thag(x,t) is deter-
transport channels. Let us focus on just one of tHeay, | mined by the values of the density of walkesall t' <t
=1), which consists of two terms. The first one, proportional\yhen that particular site was unstable!
to 1+p,, is the only one that survives j8,=1 [note that, To finish this section it is interesting to clarify the rela-
from the “microscopic” levelg=1 corresponds to having the tjonship between Eq44) and the so-called distributed-order
walker moving under a step-size Levy pdf in which the onlyfractional kinetics(DOFK) introduced by Caput¢53] and
steps aIIoweq for the_ waker takt_a it to larges (except for very recently reviewed in Ref54]. In a sense, Eq44) is
an exponentially vanishing contribution to lowes]. How-  he"simplest nonlinear generalization of DOFK, that substi-
ever, thea-fractional derivative is nothing else but an inte- ytes the linear combination of fractional derivatives charac-
gral over(-=,x] [see Eq(B1)]: teristic of DOFK with a nonlinear combination that is medi-

a"‘A(ll) B 1 a (> A(X,DN(X DX ated through a nonlinear threshold condition.

Ix* =1“(p—a)@ . (x=xHeer (46)

;i

. . . . V. ACCOMMODATING MULTIPLE CHARACTERISTIC
where p is the integer part ofx. Therefore this fractional TIME SCALES

derivative collects the contributions of all walkers that end
up atx at timet from X <x. But, since the argument in the As we mentioned in the introduction, one of the limita-
integral is the “projected” walker density;(x’,t)n(x',t),  tions of the extended CTRW/GME is that it assumes that all
only those locationg’ for which \;(x’,t) # 0 can contribute ~ transport channels share the same waiting-time pdf. Such an
to the density of Walkers at In the case in Wh|Ch the pro_ assumptlon IS Central to the prOOf Of the existence Of an
jector describes some instability threshés in Eq.(9)], it ~ associated GME, but it is not justified from a physics point
follows that the first of the two contributions to E@3)  Of view in many applications. This problem can, however, be
from the first transport mechanism S|mp|y states that an)SaUSfaCtorlly dealt with in the fluid limit we jUSt derived in
change in walker density at poirtand timet can only come ~ S€c. IV.
from points X<x that, at that same time, are unstable To prove it, note first that the choices of step-size and
Analogously, the second contribution to the first transportvaiting-time pdf given by Eqsi24) and(36) are equivalent
mechanism{the term proportional td1-3,) in Eq. (45] to considering each transport mechanism as an independent
gives the contribution to the change inix,t) from points CTRW, given by
with x_’ =X that are unstable at ti_the In the general case, a {PlaprotX=X); PLagt-t)), j=1,2. (48
combination of both terms applid8,9]. For example, Eq. g ne
(44) would correspond to the case in which the combination The obvious way to introduce multiple scales is to assume
of the two contributions yields a symmetric Levy pdf: eachthat alsoy and 7 can be channel dependent. But this invali-
walker has equal probability of moving to larger or smallerdates the derivation of the GME presented in Sec. Il. One
x's from any given location. way to overcome this problem is to prove that any transport
Before discussing the non-Markovidy<1) case, it is channel can be “rescaled,” in a sense to be clarified later, so
important to note that Eq45), in spite of being Markovian, that itsrescaled waiting-timepdf coincides with that of the
may contain some sort of system memory. It is the “memory-other channels. Of course, this means that all the information
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intrinsic to that mechanism is stored instead in the “rescaledhany yeard57—-60. It remains, however, to be seen how
step-size” pdf. As we proceed to show now, this rescaling ighis formalism can be extended to account also for energy
only possible in the fluid limit. (hea) and momentum transport. Anomalous heat transport is
To prove it, note first that each of the individual CTRW a topic that has seen renewed interest in recent tiGe$2.
defined in Eq.(48) is integrable. Therefore its fluid limit is But its accommodation in this framework still requires a
given by Eq.(29), which is a function ofa, 8,7y, and the much better understanding of fractional generalization of
ratio (c*/77). Therefore the fluid limit of each individual Boltzmann equilibrium concepts than currently available. It

CTRW is invariant under the scale transformation thus remains a very active field of wof&3,64.
{v,7,a,B,0} = {v,7,a,8,0'}, (49) ACKNOWLEDGMENTS
if it holds that Fruitful (personal and electronicdiscussions with M.
[o']o]*=[717]". (50) Varela, D. del-Castillo-Negrete, G. Zaslavsky, and R.
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namics of each individual CTRW remains unchan(jby FTN2003-08337-C04-01. Research was carried out in part at
essential, we meaa,y and g), it is always possible to res- Oak Ridge National Laboratory, managed by UT-Battelle,
cale the temporal and spatial scale parameters of all CTRWsLC, for U.S. DOE under Contract No. DE-AC05-
(which are associated to the temporal and spatial characteéPOOR22725.

istic scales of each transport mechanisuo that their res- APPENDIX A: LEVY DISTRIBUTIONS

caled temporal scale parameters are all the same. On the

other hand, the value of cannot be rescaled in this fashion.  The Levy-Gnedenko family of pdf’s comprises all the
For this reason, consideration of several transport mechgossible limit distributions that are strictly stable with re-
nisms with different temporagssentialdynamics is not pos- spect to thesum of N independent and identically distributed

sible in this framework, not even in the fluid limit. (i.i.d.) random variableqd16,17. The family is defined in
terms of three parameters, and its members are denoted by
VI. CONCLUSIONS P.z.Y). They can be defined in terms of their Fourier trans-

) ) ___form or characteristic function d®<a<2, |g/<1) [17]
In the previous sections we have shown that the fluid limit

of the extended CTRW/GME framework defined by Ef). _ alila : Ta
(and its generalizations to a larger number of transport chan- Pa,go(k) = exp{— oK {1 ~ip sgrik) tan(?)} }
nel9 can indeed overcome some of the limitations of the (AL)
microscopic GME. In particular, we have shown that it can

account adequately for the interaction between multiple The three labels define the properties of each distribution.
transport mechanisms with disparate characteristic timeirst, 3 measures thesymmetryof the distribution. This
scales as long as they share the same essential temporal @smes from the fact that

namics.

Also, we have shown that the resulting fluid equations Pa,ﬁ,(r(y) = Pa,—ﬁ,«r(_ y). (A2)
[Egs. (43) and (44)] are capable of implementing the |t can very within —1< g<1 for all a# 1, 2, for which only
memory-through-profile mechanism into the dynamics in ang-q js possible. Second; gives the asymptotic behavior of
appropriate way, that remains active even when the inditne distribution at largg. Thus for 0< a<2 all Levy distri-

vidual transport channels are Markovian. For this reasomytions exhibit heavy tails. Certainly, far+ 1, it holds that
alone, these equations suggest themselves as a valuable gen-
Co )W,y — o

eralization of previous studies of SOC dynamics based on
some nonlinear versions of the standard diffusive equation Pagoly) ~ c

; (B8) oy, y— 420 (A3
[41,55,58. Otherwise, any approach that attempts to study o2
this problem by relying on linear FDEs must consider tem-where the constant is given by
poral fractional derivatives to account for that memory ef-
fect. The problem thus becomes strongly non-Markovian C = (a-Da : (A4)
[15,34. “ T(2-a)codmal2)’

Finally, note that Eq.(43) is useful to model particle I'(x) is Euler gamma function. In the special casel, the
transport in systems in which critical thresholds exist thatoy "o cove 2o )~ (ol m)|y|™2. Finally o is called a
can excite/damp instability-driven transport. In particular, We_ le para)r/neteblé(():g lljlse M y

would like to mention its application to turbulent transport in
plasmas magnetically confined in a tokamak or stellarator Popo@y) = Py sgriapjaoy)- (A5)
[40,43. In these works, it was shown that the combination of
nonlinearity and superdiffusive transport channels may pro-
vide us with explanations for the observation of anomalous
scalings in the global confinement time and nondiffusive A Levy distribution is calledextremal if its skewness
propagation of perturbations observed in the experiments foyalue is maximum;3=+1 for a# 1, 2. It is important to

1. Extremal Levy distributions
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notice that, according to the previous equations, the power- b -1 dr b f(x")dx’

law decay is only observed in one tail in the case of all D% f(x) = (p—a) d-xP X —x)=PL |
extremal distributiong8=+1), the other decaying instead X

exponentially. In the case ofda<2, B=+1 implies that (B1)
the exponential tail exists foy— —o, while =-1 has a ) )

right exponential tail fory— . For 0<a<1 the extremal N these expression§i(x) is the usual Euler Gamma func-
distributions areone sided52]: they are defined only foy ~ tion. andp represents the integer part efa (or b) is called
>0 if f=-1 and fory<0 if B=1. In that case, the exponen- the start(end point of the operator.

tial tail is found in the limity— 0+ for B=-1, and fory In the cases in which the start poiator the end poinb
—0- for B=1. Their Laplace transform is given by extend all the way to infinity, we will use the notation
@ d*f
_ g o —=_ Da f(X)
P s =exp - ——=-5%). A6 ) x ;
w1,0(S) F< codmal2) ) (AB) dx?
d“f .
2. Moments of Levy distributions d(-x)® =""D% (). (B2

Another important property of the Levy distributions iS These operators are particularly interesting since they satisfy,
that all moments higher tham are infinite. That is, the mo- | ,nder Fourier transformations tHa9,21]

menta ofP,, 4, verify

d«f
_Jep=a F[d?y} =(=ig)*f(q), (B3)
<|X|p> - {[Ca”g(p)]papvp <a ' (A7)

where the coefficient is not relevant for our discusgiboan { df } = (iq)*f(q) (B4)
be found in Ref[17]). Thus only the Gaussian distribution d(-x)“ '
(e=2) has a finite variance. Furthermore, all distributions

with @<1 have also infinite first moments. As a matter of fact, it is also possible to define them via Eqs.

(B3) and (B4).
o . o Another useful fractional operator is the so-callRbsz
3. Explicit expressions of Levy distributions fractional derivative operatof19,21]. It is defined as the

There are only three Levy distributions for which an ana-Symmetrization:

lytical expression exist§17]: The Cauchy distribution Its de 1 de de
real space representation is =- {— + } (B5)
d|x|« 2 cogmal2)| dx*  d(-x)“
P1o,(y) = 7 : (A8) Thus, the Riesz operator verifies under Fourier transform that
SO aly?+ o?)
the Gauss distribution F{dd| |f } = —|q|*f(q), (B6)
X a
VE 1re—y2/402 (A9)  which follows from Egs.(B3) and (B4) thanks to the com-
20\ plex identity
(note that the relation of with the usual widthw of the o N o
Gaussian is thus@=w?); and theLevy distribution (—ig)*+(iq)*=2[g|* co ek (B7)
c\"?1 wherei=\-1, th imagi i
B A Y =v-1, the usual imaginary unit.
Pu21,(Y) (27-;> y3/ze ' (AL0) Finally, the Caputo fractional derivative operatds de-
fined ag[51]
APPENDIX B: FRACTIONAL DIFFERENTIAL azf ) = 1 Xd_pf(x,) dr B8)
OPERATORS dox”" T(y=p)Jo ™ (x=x)74P

The Riemann-Liouville fractional derivative operators h is the | h fractional d
can be defined explicitly by means of the integral operator%’y erep Is the Integer part ofy. T ¢ Caputo_ ractional de-
rivative is usually associated to derivatives in time. The need

[19.21: for defining a different fractional derivative when time is

[ fx)dx in_volved (inst_ead of using the Riem_ann-LioviIIe operator

D% f(x) = —[ ﬁ] with start point att=0) has to do with the fact that the
F(p-a)d¥| J, (x=x")*P Laplace transform of the Caputo derivative verifi9,21]
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drf p-1 d&f of lower order thaty, which do not have a clear physical
L dLy(t) =s(s) - > sTk‘lm(O), (B9)  meaning in the case of real applicatidd®,21]. The relation
k=0 t between Riemann-Lioville and Caputo derivatives is given

. — L by [21]
which depends only on the initial values fif) and its inte-

ger derivatives. The Laplace transform 4i”, f(t) depends dif  t71(0)

Y P A T
instead orf(t) and the initial values of fractional derivatives oD{f(1) = d.t” " r1-y- (B10)
[1] E. W. Montroll and G. Weiss, J. Math. Phy8, 167 (1965. [28] M. F. Shlesinger, B. J. West, and J. Klafter, Phys. Rev. Lett.
[2] E. W. Montroll and M. F. Shlesinger, iBtudies in Statistical 58, 1100(1987.
Mechanics edited by J. L. Lebowitz and E. W. Montroll [29] D. E. Newman, B. A. Carreras, P. H. Diamond, and T. S.
(North-Holland, Amsterdam, 1984Vol. 11, p. 5. Hahm, Phys. Plasma3, 1858(1996.
[3] H. Scher and M. Lax, Phys. Rev. B, 4491(1972. [30] R. Sanchez, D. E. Newman, and B. A. Carreras, Nucl. Fusion
[4] V. M. Krenke, E. W. Montroll, and M. F. Shlesinger, J. Stat. 41, 247 (2001).
Phys. 9, 45 (1973. [31] J. P. Freidbergldeal Magnetohydrodynamio®lenum Press,
[5] J. Klafter and R. Silbey, Phys. Rev. Le#t4, 55 (1980. New York, 1987.
[6] E. Scalas, R. Gorenflo, and F. Mainardi, Phys. Rev6% [32] G. M. Zaslavsky, M. Edelman, H. Weitzner, B. Carreras, G.
011107(2004. McKee, R. Bravenec, and R. Fonck, Phys. Plasia8691
[7] W. Feller,An Introduction to Probability Theory and its Appli- (2000.
cations(John Wiley & Sons, New York, 1966 [33] B. A. Carreras, V. E. Lynch, and G. M. Zaslavsky, Phys.
[8] R. Metzler and J. Klafter, Phys. Rep39, 1 (2000. Plasmas8, 5096 (2001).
[9] G. M. Zaslavsky, Phys. Re871, 461 (2002. [34] D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, Phys.
[10] V. M. Krenke and R. S. Knox, Phys. Rev. 8 5279(1974). Plasmasll, 3854(2004).
[11] W. Shugard and H. Reiss, J. Chem. Phg5, 2827(1976. [35] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&8, 381
[12] G. H. Weiss, Aspects and Applications of Random Walks (1987.
(North-Holland, Amsterdam, 1994 [36] T. Hwa and M. Kardar, Phys. Rev. A5, 7002(1992.
[13] R. Balescu, Phys. Rev. B1, 4807(1995. [37] H. J. JensenSelf-organized CriticalitfCambridge University
[14] B. Berkowitz, J. Klafter, R. Metzler, and H. Scher, Water Re- Press, Cambridge, England, 1997
sour. Res.38, 1191(2002. [38] J. M. Carlson, J. S. Langer, B. E. Shaw, and C. Tang, Phys.
[15] B. A. Carreras, V. E. Lynch, D. E. Newman, and G. M. Rev. A 44, 884 (199)).
Zaslavsky, Phys. Rev. B0, 4770(1999. [39] S. Field, J. Witt, F. Nori, and X. Ling, Phys. Rev. Left4,
[16] B. V. Gnedenko and A. N. Kolmogoro\,imit Distributions 1206(1995.
for Sums of Independent Random Variakléddison-Wesley, [40] B. Ph. van Milligen, R. Sanchez, and B. A. Carreras, Phys.
Reading, MA, 1954 Plasmasll, 2272(2004).
[17] G. Samorodnitsky and M. S. TaqdBtable Non-Gaussian Pro- [41] R. Sanchez, B. Ph. van Milligen, B. A. Carreras, and D. E.
cessegChapman & Hall, New York, 1994 Newman(unpublishedl
[18] A. I. Saichev and G. M. Zaslavsky, Chads 753 (1997). [42] D. E. Newman, R. Sanchez, B. A. Carreras, and W. Feren-
[19] K. Oldham and J. Spaniefhe Fractional CalculugAcademic baugh, Phys. Rev. Leti88, 204304(2002.
Press, New York, 1974 [43] B. Ph. van Milligen, B. A. Carreras, and R. Sanchez, Phys.
[20] A. Carpinteri and F. Mainardiractals and Fractional Calcu- Plasmas11, 3787(2004.
lus in Continuum MechanicgSpringer-Verlag, New York, [44] ITER Physics Experts Group on Confinement and Transport
1997. Modelling, Nucl. Fusion39, 2175(1999.
[21] I. Podlubny, Fractional Differential Equations(Academic  [45] E. Scalas, R. Gorenflo, and F. Mainardi, Physic&284, 376
Press, New York, 1998 (2000.
[22] J. T. Edwards, N. J. Ford, and A. C. Simpson, J. Comput. Appl[46] A. Compte, Phys. Rev. 53, 4191(1996.
Math. 148 401 (2002. [47] R. Metzler, J. Klafter, and I. M. Sokolov, Phys. Rev. %8,
[23] V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. 1621(1998.
Ferreira-Mejias, and H. R. Hicks, J. Comput. Ph92 406 [48] R. Hilfer, J. Phys. Chem. BL04, 3914(2000.
(2003. [49] M. M. Meerschaert, D. A. Benson, H. P. Scheffler, and P.
[24] A. Compte, Phys. Rev. 55, 6821(1997). Becker-Kern, Phys. Rev. 66 060102ZR) (2002.
[25] A. Compte and M. O. Caceres, Phys. Rev. Ledt, 3140  [50] F. Mainardi, M. Raberto, R. Gorenflo, and E. Scalas, Physica A
(1998. 287, 468(2000.
[26] A. S. Monin and A. M. Yaglom Statistical Fluid Mechanics [51] M. Caputo, J. R. Astron. Soc. Cai3, 529(1967).
(MIT Press, Cambridge, MA, 1975 [52] R. Gorenflo, inFractals and Fractional Calculus in Con-
[27] M. Lesieur, Turbulence in FluidgKluwer Academic Publish- tinuum Mechanicsedited by A. Carpinteri and F. Mainardi
ers, Dordrecht, 1997 (Springer-Verlag, Wien, 1997

011111-9



SANCHEZ, CARRERAS, AND van MILLIGEN PHYSICAL REVIEW E71, 011111(2009

[53] M. Caputo, Elasticita e DissipiaziongZanichelli, Bologna, [59] N. J. Lopes-Cardozo, Plasma Phys. Controlled Fu§@n799

1969. (1995.
[54] I. M. Solokov, A. V. Chechkin, and J. Klafter, cond-mat/ [60] B. A. Carreras, IEEE Trans. Plasma S2b, 1281(1997).
0401146. [61] B. Li and J. Wang, Phys. Rev. Let@1, 044301(2003.
[55] P. Bantay and I. M. Janosi, Phys. Rev. Le88, 2058(1992. [62] S. Denisov, J. Klafter, and M. Urbakh, Phys. Rev. L&,
[56] A. Diaz-Guilera, Europhys. Lett26, 177 (1994). 194301(2003.
[57] C. C. Petty and T. Luce, Phys. Plasmhs121(1994. [63] E. Barkai, Phys. Rev. B8, 055104R) (2003.
[58] K. W. Gentleet al, Phys. Plasmag, 2292(1995. [64] E. Barkai, J. Stat. Physl15 1537(2004.

01111-10



