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derived in terms of fractional differential equations. In this limit, it is shown that the formalism allows for the
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I. INTRODUCTION

Continuous-time random walkssCTRWsd have found a
wide range of applications in physics since their introduction
almost 40 years agof1g. These generalizations of the stan-
dard sdiscreted random walk are defined in terms of two
probability density functionsspdf’sd: psx−x8d, that gives the
probability of the walker moving fromx8 to x at time t, and
cst− t8d, that gives the probability of having waited atx8 and
amount of timet− t8 before moving tox. Such CTRW is
readily “integrated.” That is, it is possible to derive a formal
expression for the probability of the walker being atx at time
t , nsx,td. This quantity is also referred to as thewalker den-
sity. The derivation exploits the spatial invariance ofpsx
−x8d and the temporal invariance ofcst− t8d, to solve for-
mally for the Laplace-Fourier transform of the walker den-
sity sin what follows, any quantity will be represented by the
same symbol that its Fourier and/or Laplace transforms, but
they can still be distinguished by their arguments.s andk are
used, respectively, as Laplace and Fourier variablesd, which
happens to bef1–3g

nsk,sd = n0skdf1 − cssdghsf1 − cssdpskdgj−1, s1d

where n0skd is the Fourier transform of the initial walker
density. Laplace-Fourier inversion of the Montroll-Weiss
equationfEq. s1dg completes the integration, providing with
the walker density for allt andx. It is also straightforward to
prove that this CTRW can be mapped to the following gen-
eralized master equationsGMEd f4–6g:

]nsx,td
]t

=E
0

t

dt8SE
−`

+`

dx8Ksx − x8,t − t8dnsx8,t8d

− nsx,t8dE
−`

+`

dx8Ksx − x8,t − t8dD , s2d

where spatial and temporal invariance are again exploited to
show that the GME transition kernelK must be chosen as

Ksk,sd = scssdpskdf1 − cssdg−1. s3d

This CTRW/GME formalism can be used to model the
transport properties of many systems, once appropriate forms
for p and c are chosen that capture the relevant physics of
the mechanism that governs transport in them. Thanks to the
central limit theoremf7g, it is in many cases sufficient thatc
be an exponential andp a Gaussian. The “fluid limit” of such
CTRWs fin which only those details pertinent to the long-
time, long-distance system dynamics are kept in Eqs.s1d or
s3dg corresponds then to the usual diffusive equationf8,9g:

]n

]t
= D

]2n

]x2 , s4d

for a value of the diffusion coefficientD that is determined
uniquely by the chosen distributions.

But the applicability of integrable CTRWs surpasses dif-
fusive systems. Experiments have shown that, in many sys-
tems of physical, chemical, and biological interest, the vari-
ance of the walker displacement from some initial point
increases with time asf3,8–15g

kx − x0l ~ tn/2, n Þ 1, s5d

in contrast to what Eq.s4d predicts sn=1d. Transport is
termed either “superdiffusive”sn.1d or “subdiffusive” sn
,1d. Integrable CTRWs can still be used to describe trans-
port in many of these cases, butc and p must be chosen
insteadswith certain restrictions that will be made precise
laterd from within the family of stable Levy distributionsssee
Appendix Ad. This family of pdf’s, usually denoted by
Pfa,b,sgsyd, satisfies a generalized version of the central limit
theorem that does not require that the pdf’s decay exponen-
tially at large values of the argumentf16,17g. It contains, as
special cases, the Gaussian distribution fora=2, b=0, and
the exponential distribution fora=1, b=1 sthe latter is not
strictly contained, but exists as a weak limit whena→1 for
b=1 f18gd. A fluid limit also exists for these CTRWs, but it
must be expressed instead in terms of fractional differential
operatorsf8,9g. In spite of the somewhat esoteric nature of
these operatorsssee Appendix Bd, efficient algorithms exist*Corresponding author: rsanchez@fis.uc3m.es
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that can be used to integrate them numerically for most ap-
plicationsf19–23g.

Regretfully, there are many other transport problems of
interest that take place in systems where spatial invariance is
absent. “Integrable” CTRWs then become useless since the
Montroll-Weiss equationfEq. s1dg ceases to be valid. An ex-
ample of this situation is provided by the motion of tracer
particles in a moving background, as is the case of fluids in
which bulk rotation or shear velocity fields are present
f24,25g. The problem then becomes strongly inhomoge-
neous. Still more dramatic is the case in which several trans-
port mechanisms or channels exist that can be switched on/
off by some threshold condition. The system is then not only
inhomogeneous, but stronglynonlinear as well. Many ex-
amples of this situation can be found in fluids and plasmas
when turbulence is still not fully developed but instead, in-
stability bursts appear whenever some critical local threshold
is overcomef26–30g. For instance, in a hot plasma confined
in a tokamak, the confined plasma pressure is known to be
limited by pressure-gradient-driven instabilitiesf31g. These
instabilities are excited when the pressure gradient becomes
larger than a certain critical value set by the local conditions
and magnetic field, giving rise to strong, apparently nondif-
fusive, transportf32–34g. Other examples can be found in
the realm of self-organized-criticalitysSOCd f35–37g, where
a superdiffusive transport mechanismsi.e., the avalanchesd
becomes active only when some threshold condition is met.
This appears to be the case, for instance, in earthquake dy-
namicsf38g swhere the threshold condition is given by the
maximum stress that a given tectonic plate can bear without
displacingd or in the transport of magnetic flux quanta in
superconductorsf39g swhere the threshold condition is given
by the depth of the local pinning potentiald.

In a recent series of papersf40,41g, we proposed an ex-
tension of the standard integrable CTRW framework that can
accommodate not only inhomogeneous casessin Ref. f24g, a
less general CTRW than the one presented here was derived
to treat this cased but also many nonlinear ones. The exten-
sion is based on the observation that the class of CTRWs that
can be mapped to a GME is larger than that of the integrable
CTRWs. It also includes all nonintegrable CTRWs with a
step-size pdf of the formp(x−x8 , hsx8 ,td), whereh is any
snonlineard arbitrary function of the form

hsx8,td = fXx8,t;nsx8,td,
dn

dx
sx8,td,

d2n

dx2sx8,td¯C . s6d

Therefore the step-size pdf may now contain arbitrary non-
linearities and/or inhomogeneities through the functionh,
which means that the next step size that the walker chooses
at timet may dependseven nonlinearlyd in a Markovian way
on any localsi.e., defined atx8 at time td quantity.

This extended CTRW can easily address the study of the
afore-mentioned nonlinear interaction between multiple
transport mechanisms. For instance, assuming for simplicity
that only two channels are present, it would be sufficient to
choose the following step-size pdf:

psx − x8,x8,td = l1sx8,tdPfa,b,sgsx − x8d

+ l2sx8,tdP2,0,s8sx − x8d, s7d

where we have arbitrarily assumed that the first process is
superdiffusivesi.e., characterized by a Levy pdf witha,2d
while the second is diffusivescharacterized by a Gaussiand.
The two “projectors”l1,l2 can be defined arbitrarily, as long
as they satisfysat all locations and timesd positiveness and

l1sx,td + l2sx,td = 1. s8d

As an illustration of application, consider the case of a
SOC system with added diffusionf30g. In it, the superdiffu-
sive mechanismsi.e., the avalanchesd takes over the local
control of transport above some prescribed critical gradient
value. Then,l1 andl2 should be given by

l1sx,td = HXUdn

dx
sx,tdU − ZcsxdC, l2 = 1 −l1, s9d

with Hsxd the usual Heaviside step function. On the other
hand, in the case in which the diffusive channel remains
activesbut subdominantd when the profiles values overcome
the local critical gradientf42g, we should use instead

l̃1sx,td = l1sx,td + el2sx,td,

l̃2sx,td = s1 − edl2sx,td, s10d

wherel1,l2 are the same functions defined in Eq.s9d and
where the arbitrary parameter 0,e,1 sets the relative
strength of the diffusive channel with respect to the superdif-
fusive one when the system is locally supercritical. Many
other cases could be also addressed by choosing the appro-
priate form for the projectors.

The interesting feature of all the CTRWs defined by Eq.
s7d is that they can keep active some sort of system memory
fthrough the nonlinearity hidden inl jsx8 ,tdg, which makes
that the shape of instantaneous slope profile that has been
carved by past events may affect the system later evolution.
And this happens even if the CTRW is constructed to be
Markovian in time by choosingc exponential. For this rea-
son, the choices provided by Eqs.s7d and s9d have already
proved extremely useful in the investigation of several as-
pects of transport in systems governed by SOC dynamics
f41g, also, in the study of particle turbulent transport in plas-
mas confined in a tokamak or a stellaratorf40,43g.

However, the present formulation of the extended CTRW/
GME is based on an important assumption that is not always
justified in practice: that all transport mechanisms share the
same temporal dynamics and characteristic scales in the
sense that the same waiting-time pdfc is used at all times
independent of which transport channel is active. For in-
stance, coming back to the example of a magnetically con-
fined plasma, it is well known that the two transport channels
that set the dynamics of particle and energy transport in these
plasmas—collisional diffusion and turbulence—have differ-
ent associated time scales. In particular, both time scales can
change very differently when external parameters such as the
plasma temperature or the strength of the magnetic field are
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varied f44g. Similar examples are also common in many
other fields of physics and chemistry. In this paper we will
show that this shortcoming can be easily removed by moving
to the fluid limit of the extended CTRW/GME framework, a
fact that widens importantly its range of application to real
systems.

The paper is then organized as follows. In Sec. II, we
review the derivation of the GME associated to the noninte-
grable CTRW. Then, after reviewing briefly how the fluid
limit is taken for the case of integrable CTRWs in Sec. III,
we proceed to calculate the fluid limit of the nonintegrable
case in Sec. IV. Next, in Sec. V, we show how the limitations
of the extended CTRW/GME mentioned in this section dis-
appear in this limit. Finally, some conclusions are drawn in
Sec. VI.

II. NONINTEGRABLE CTRWS: DERIVATION
OF THE GENERALIZED MASTER EQUATION

In this section, we will show that the family of CTRWs
that have an associated GME is not limited to those which
are integrable, but also contains the class of CTRWs defined
by the joint step-size, waiting-time pdf given byp=p(x8
−x8 ,hsx8 ,td) with h given by Eq.s6d f40,41g. The existence
of such a GME is essential to take any kind of fluid limit,
since a closed expression fornss,kd like that provided by Eq.
s1d is no longer available in this case.

The difficulties of proving that a GME can be associated
to this CTRW become clear when trying to “integrate” it
along the lines outlined in Sec. I. First, we express the prob-
ability of finding the walker asf2g

nsx,td =E
0

t

hsx;t − t8dQsx;t8ddt8, s11d

wherehsx; t− t8d represents the probability that the walker,
located atx8 at time t8, still remains in the same position at
time t:

hsx,td =E
0

t

dt8cst8,xd. s12d

Qsx; td represents the total probability of the walker arriving
at position x at time t by any possible route. Next, we
Laplace transform Eq.s11d to get

nsx,sd = hsx;sdQsx;sd. s13d

The Laplace transform ofhsx,t− t8d is trivially obtained in
terms ofcss,xd by Laplace transforming Eq.s12d:

shsx,sd = 1 −css,xd. s14d

RegardingQsx; td, it satisfies the recursive equation as shown
in Ref. f2g,

Qsx;td − dsxddstd =E
−`

`

dx8p„x − x8,hsx8;td…

3E
0

t

dt8csx8;t − t8dQsx8;t8d, s15d

that only assumes that the walker is initially located atx.

From Eq.s15d it is clear that, ifp andc would not depend
explicitly on h, Qsq,sd would be readily available via a
Fourier-Laplace transformation. However, in the case of our
CTRW, Qsx,td may depend onnsx8 ,td sthrough the function
hd, and the standard approach from Ref.f2g is no longer
applicable. The CTRW under consideration is therefore
“nonintegrable” due to the presence of the nonlinearity.

To derive the GME associated with this CTRW we must
establish the link to the CTRW the link through Eq.s15d
instead. We start by introducing an auxiliary function in
Laplace space,

fsx;sd = csx;sd/hsx;sd, s16d

that allows us to rewrite Eq.s15d as

Qsx;td − dsxddstd =E
−`

`

dx8p„x − x8, hsx8;td…

3E
0

t

dt8fsx8;t − t8dnsx8,t8d, s17d

after transforming the temporal convolution in the right-hand
sidesrhsd of Eq. s15d with the help of the Laplace transform
Lf·g:

LSE
0

t

dt8csx8;t − t8dQsx8;t8dD
= csx8,sdQsx8,sd = fsx8,sdnsx8,sd

= LSE
0

t

dt8fsx8;t − t8dnsx8;t8dD , s18d

where we have also used Eq.s13d. Next, we Laplace trans-
form Eq. s17d, multiply the result byshsx;sd, and use Eq.
s13d safter adding and subtractingdsxdg to obtain

fsnsx,sd − dsxdg − dsxdfshsx;sd − 1g = shsx;sdgsx;sd,

s19d

wheregsx,sd stands for the Laplace transform of the rhs of
Eq. s17d. gsx,sd is eliminated by combining the Laplace
transform of Eq.s17d with Eqs.s14d and s16d to get

gsx;sd =
dsxdcsx;sd − fsx;sdnsx,sd

fshsx;sd − 1g
. s20d

After inserting this expression forgsx,sd, Eq. s19d is
Laplace inverted to yield the final GME we sought:

]nsx,td
]t

= −E
0

t

dt8fsx;t − t8dnsx,t8d +E
0

t

dt8

3E
−`

`

dx8fsx8;t − t8dp„x − x8, hsx8;td…nsx8,t8d.

s21d

The resulting GME transition kernel in Eq.s21d is thus
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Ksx,x8,t,t8d = fsx8;t − t8dp„x − x8, hsx8;td…, s22d

that reduces to the usual transition kernel given by Eq.s3d if
spatial invariance is again assumed by disregarding any pos-
sible dependence onhsx8 ,td. The functionfst− t8d is usually
known as thememory functionsince it becomes a delta func-
tion only when the CTRW is Markovianf45g.

III. FLUID LIMIT OF INTEGRABLE CTRWS

As we mentioned in Sec. I, fluid limit means that all de-
tails of the CTRW that are irrelevant at very large temporal
and spatial scales are neglectedf6,46–50g. Mathematically,
this limit can be taken either on the Montroll-Weiss equation
fEq. s1dg or on the associated GMEfEq. s2dg. In this section,
we collect some well known results regarding this calcula-
tion that will be useful when addressing the calculation of
the same limit for the nonintegrable case in Sec. IV.

Before proceeding, a few comments are appropriate about
the adequate choices for waiting-time and step-size pdf’s. As
we said in Sec. I, the generalized central limit suggests that
both should be chosen from within the family of stable Levy
distributionsf16g. The only details about these distributions
that are of concern at this stagessee Appendix A for more
detailsd are that they can be defined in terms of their Fourier
transformf17g:

Pa,b,sskd = expH− saukuaF1 − ib sgnskd tanSpa

2
DGJ ,

s23d

with aP s0,2g, ubuø1 and 0,s,` sthe meaning of each
label is discussed in Appendix Ad. Usually, one can choose
any stable Levy pdf as step-size pdfsnote that the choicea
=2, b=0 is the Gaussian pdfd, but waiting-time pdf’s can
only be defined for positive lapses of timesi.e., for t− t8
ù0d. For this reason, they must be chosen within the sub-
family of Levy pdf’s known aspositive extremal distribu-
tions sa,1, b=1d f17g, that are only defined for positive
values ofy ssee Appendix Ad. Also, the exponential can be
used, since it can be shown that it is the limiting pdf when
the limit a→1 for b=1 is takenf18g.

Next, it is useful to introduce some notation. In what fol-
lows, the labelsa ,b ,s will always refer to step-size pdf’s.
Regarding the waiting-time pdf’s, onlya ands are free pa-
rameters, sinceb=1. To avoid confusion with the step-size
labels, we will use insteadg sfor ad andt sfor sd to refer to
waiting-time labels. Therefore we will assume that the inte-
grable CTRW is defined by a waiting-time step size:

cst − t8d = Pfg,1,tgst − t8d, g ø 1, 0, t , `, s24d

and step-size pdf:

psx − x8d = Pfa,b,sgsx − x8d, a ø 2, ubu ø 1, 0, s , `.

s25d

The fluid limit can now be taken, for instance, on the
Montroll-Weiss equationfEq. s1dg. We only need to take the
limit of long distancessin Fourier space,k→0d in pskd and

of long timessin Laplace space,s→0d in cssd. This reduces
to approximating Eq.s23d as

pskd . 1 − saukuaF1 − ib sgnskd tanSpa

2
DG , s26d

and approximating the Laplace transform of positive ex-
tremal Levy pdf’s, given by Eq.sA6d, by

cssd . 1 − Ag
−1tgsg. s27d

where we have also included the exponential law ifg=1 and
defined the constant

Ag = Hcosspg
2 d , g , 1

1, g = 1
J . s28d

After inserting Eqs.s27d ands26d in Eq. s1d, the fluid limit
of the Montroll-Weiss equation becomes

nss,kd . n0skdHs+ Csa,gds1−gukua

3F1 − ib sgnskd tanSpa

2
DGJ−1

, s29d

where the coefficientCsa ,gd=Agsa /tg has been defined.
Equations29d can be rewritten as

snss,kd − n0skd = − Csa,gds1−gukua

3F1 − ib sgnskd tanSpa

2
DGnss,kd.

s30d

After using the identity Eq.sB7d, Eq. s30d can be Fourier
inverted by introducing the two Riemann-Liouville fractional
differential operators defined by Eq.sB2d, which satisfy
f19,21g

FF ]an

]s±xdaG ; s7 ikdanskd. s31d

Ff·g represents the Fourier transform. The resulting equation
becomes thus a fractional differential equationsFDEd in
space:

snss,xd − n0sxd = −
Csa,gds1−g

2 cosspa
2 d

3Ss1 + bd
]an

]xa + s1 − bd
]an

]s− xdaD .

s32d

In order to carry out next the Laplace inversion of Eq.
s32d, two choices are possible. The first one is to multiply
both sides bysg−1 and introduce the Caputo fractional differ-
ential operatorf51g fEq. sB8dg, which verifiesf19,21g sfor
g,1d
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LF ]c
gn

]ct
gG ; sgnss,xd − sg−1n0sxd, s33d

whereLf·g represents the Laplace transform. The result is the
FDE in space and time:

]c
gn

]tc
g = −

Csa,gd
2 cosspa

2 dSs1 + bd
]an

]xa + s1 − bd
]an

]s− xdaD .

s34d

A second possibility is to Laplace invert Eq.s32d directly.
This can be done by introducing the Riemann-Liouville dif-
ferential operator with start point att=0 fEq. sB1dg f48g:

]n

]t
= − 0Dt

1−gF Csa,gd
2 cosspa

2 dSs1 + bd
]an

]xa + s1 − bd
]an

]s− xdaDG .

s35d

The interpretation and applications of Eqs.s34d and s35d
have been discussed in detail in the literature for different
choices ofa and g f6,8,9,48,50,52g. We will only remark
here that the exponent that determines the superdiffusive or
subdiffusive character of transport is equal ton=2g /a fsee
Eq. s5dg. Thus superdiffusive behavior is observed if 2g
.a, diffusive if 2g=a, and subdiffusive if 2g,a f8,9g. For
the choicesa=2, g=1, Eqs. s34d and s35d reduce to the
standard diffusive equationfsee Eq.s4dg with diffusive coef-
ficient D=Cs2,1d=s2/t.

IV. NONINTEGRABLE CTRWS: FLUID LIMIT

We will now derive the fluid limit of the GME Eq.s21d
for the choices of waiting-time and step-size pdf’s suggested
by the generalized central limit and our discussion in Sec. I.
Regarding the same waiting-time pdf, the same choice al-
ready made in the integrable casefsee Eq.s24dg will be used.
However, we consider instead as step-size pdf the combina-
tion of two arbitrary stable Levy pdf’s:

psx − x8,x8,td = l1sx8,tdPfa1,b1,s1gsx − x8d

+ l2sx8,tdPfa2,b2,s2gsx − x8d. s36d

Keep in mind that the projectorsl1,l2 are completely arbi-
trary, as long as they satisfy the conditions given by Eq.s8d.
Extension to the case withN transport mechanisms is
straightforward.

A. Fluid limit in terms of FDEs

The fluid limit must now be taken directly on the GME
Eq. s21d, since an equation analogous to the Montroll-Weiss
equation that we used in the integrable casefsee Eq.s29dg is
not available for nonintegrable CTRWs. We proceed by first
taking the temporal part of the fluid limitss→0d of the
memory function:

fssd =
scssd

1 − cssd
, Agt−gs1−g, s37d

for which only Eq.s27d is requiredfthe coefficientAg was
introduced in Eq.s28d in Sec. IIg. We will use this result to

take the temporal part of the fluid limit of the first term on
the rhs of GME Eq.s21d, that introducing again the Caputo
derivative and taking advantage of Eq.s33d, becomes

E
0

t

dt8fsx;t − t8dnsx,t8d = L−1ffssdnsx,sdg

. L−1fAgt−gs1−gnsx,sdg

= Agt−gS ]c
1−gn

]ct
1−g +

tg−1n0sxd
Gsgd

D
= Agt−gf0Dt

1−gng . s38d

To derive this expression, use has also been made off21g

Lftgg = Gsg + 1ds−sg+1d, s39d

and of the relation between the Caputo derivative and the
Riemann-Liouville derivative with start point att=0 fEq.
sB10d, in Appendix Bg. Doing the same with the time con-
volution appearing inside the second term of the rhs of Eq.
s21d, we can rewrite the GME as

]nsx,td
]t

= − Agt−gHf0Dt
1−gngsx,td +E

−`

`

dx8p„x − x8, hsx8;td…

3f0Dt
1−gngsx,tdJ . s40d

Next, we take the spatial part of the fluid limit by com-
puting the Fourier transform of Eq.s40d and taking its limit
whenk→0:

]nsk,td
]t

= − o
j=1

2

Csa j,gdL j
sgdsk,tdukua j−1

·Fuku − ikb j tanSpa j

2
DG , s41d

where we have defined the quantities

L j
sgdsx,td ; l jsx,tdf0Dt

1−gngsx,td, j = 1,2. s42d

The diffusive coefficientsCsa ,gd;Agsa /tg are the same as
those defined in Sec. II for the integrable cases.

The Fourier inverse of Eq.s41d can then be written ex-
plicitly by introducing again the Riemann-Lioville fractional
differential operatorsfEq. sB2d, Appendix Bg:

]nsx,td
]t

= − o
j=1

2
Csa j,gd

2 cosspa j

2 dSs1 + b jd
]a j

]xa j

+ s1 − b jd
]a j

]s− xda j
D · L j

sgdsx,td, s43d

which should be compared with Eq.s35d, that we obtained in
Sec. II for integrable CTRWs. A first comment to be made is
that, in the extended CTRW case, an equation with a tempo-
ral fractional derivative in terms of the Caputo operator is
not available due to the presence of the nonlinearity in the
projectors, in contrast to what happened with Eq.s34d in the
integrable case.
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We finish this section by noting that the rather compli-
cated Eq.s43d can be written in a more compact form if both
step-size pdf’s are symmetricsi.e., if b j =0, ∀ jd. Then, we
can introduce the Riesz operatorfEq. sB5d, Appendix Bg and
rewrite Eq.s43d as

]nsx,td
]t

= Csa1,gd
]a1L1

sgd

] uxua1
+ Csa2,gd

]a2L2
sgd

] uxua2
. s44d

B. Interpretation of FDEs Eqs. (43) and (44)

We proceed now to interpret each term in the fluid limit
given by Eq.s43d in what follows. To do it, it is convenient
to setg=1 for the moment, and consider the Markovian ver-
sion of Eq.s43d:

]nsx,td
]t

= − o
j=1

2
Csa j,1d

2 cosspa j

2 dSs1 + b jd
]a j

]xa j

+ s1 − b jd
]a j

]s− xda j
D · fl jsx,tdnsx,tdg. s45d

The rhs of Eq.s45d contains the contributions of the two
transport channels. Let us focus on just one of themssay, j
=1d, which consists of two terms. The first one, proportional
to 1+b1, is the only one that survives ifb1=1 fnote that,
from the “microscopic” level,b=1 corresponds to having the
walker moving under a step-size Levy pdf in which the only
steps allowed for the walker take it to largerx’s sexcept for
an exponentially vanishing contribution to lowerx’sg. How-
ever, thea-fractional derivative is nothing else but an inte-
gral overs−` ,xg fsee Eq.sB1dg:

]aL1
s1d

]xa ;
1

Gsp − ad
dp

dxpE
−`

x l jsx8,tdnsx8,tddx8

sx − x8da−p+1 , s46d

where p is the integer part ofa. Therefore this fractional
derivative collects the contributions of all walkers that end
up atx at time t from x8øx. But, since the argument in the
integral is the “projected” walker densityl jsx8 ,tdnsx8 ,td,
only those locationsx8 for which l jsx8 ,tdÞ0 can contribute
to the density of walkers atx. In the case in which the pro-
jector describes some instability thresholdfas in Eq.s9dg, it
follows that the first of the two contributions to Eq.s43d
from the first transport mechanism simply states that any
change in walker density at pointx and timet can only come
from points x8øx that, at that same time, are unstable!

Analogously, the second contribution to the first transport
mechanismfthe term proportional tos1−b1d in Eq. s45dg
gives the contribution to the change innsx,td from points
with x8ùx that are unstable at timet. In the general case, a
combination of both terms appliesf8,9g. For example, Eq.
s44d would correspond to the case in which the combination
of the two contributions yields a symmetric Levy pdf: each
walker has equal probability of moving to larger or smaller
x’s from any given location.

Before discussing the non-Markoviansg,1d case, it is
important to note that Eq.s45d, in spite of being Markovian,
may contain some sort of system memory. It is the “memory-

through-profile” mechanism associated to the firstsor sec-
ondd transport mechanism, which is contained in the projec-
tor l1sx,td for l2sx,tdg. As we already discussed in Sec. II,
the previous history of the system, that has been carved in
the system profile by past transport events, can in this way
affect the future system evolution.

Let us look now at the non-Markovian case withg,1,
that allows us to model memory effects in a probabilistic
manner associated with the microscopic waiting-time pdfc.
In this case,L1

gsx8 ,td appearing in Eq.s43d is more compli-
cated than just the projected densityl jsx,tdnsx,td that we
just discussed. WritingL1

gsx8 ,td explicitly, it happens that
frecall Eq.sB1d, Appendix Bg

L1
gsx8,td =

1

Gsm− 1 +gd
dm

dtmSE0

t l1sx8,t8dnsx8,t8d
st − t8d2−g−m dt8D ,

s47d

with m the integer part of 1−g. Note thatL1
gsx8 ,td may now

be nonzero even ifl1sx8 ,td=0 at timet. The reason is that
this term collects now contributions from all past timest8
, t whenl1sx8 ,t8dÞ0. Again, if l1 represents some kind of
instability threshold, this would mean thatL1

gsx8 ,td is deter-
mined by the values of the density of walkersat all t8, t
when that particular site was unstable!

To finish this section it is interesting to clarify the rela-
tionship between Eq.s44d and the so-called distributed-order
fractional kineticssDOFKd introduced by Caputof53g and
very recently reviewed in Ref.f54g. In a sense, Eq.s44d is
the simplest nonlinear generalization of DOFK, that substi-
tutes the linear combination of fractional derivatives charac-
teristic of DOFK with a nonlinear combination that is medi-
ated through a nonlinear threshold condition.

V. ACCOMMODATING MULTIPLE CHARACTERISTIC
TIME SCALES

As we mentioned in the introduction, one of the limita-
tions of the extended CTRW/GME is that it assumes that all
transport channels share the same waiting-time pdf. Such an
assumption is central to the proof of the existence of an
associated GME, but it is not justified from a physics point
of view in many applications. This problem can, however, be
satisfactorily dealt with in the fluid limit we just derived in
Sec. IV.

To prove it, note first that the choices of step-size and
waiting-time pdf given by Eqs.s24d and s36d are equivalent
to considering each transport mechanism as an independent
CTRW, given by

hPfa j,b j,s jg
sx − x8d; Pfg,1,tgst − t8dj, j = 1,2. s48d

The obvious way to introduce multiple scales is to assume
that alsog andt can be channel dependent. But this invali-
dates the derivation of the GME presented in Sec. II. One
way to overcome this problem is to prove that any transport
channel can be “rescaled,” in a sense to be clarified later, so
that its rescaled waiting-timepdf coincides with that of the
other channels. Of course, this means that all the information
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intrinsic to that mechanism is stored instead in the “rescaled
step-size” pdf. As we proceed to show now, this rescaling is
only possible in the fluid limit.

To prove it, note first that each of the individual CTRW
defined in Eq.s48d is integrable. Therefore its fluid limit is
given by Eq.s29d, which is a function ofa ,b ,g, and the
ratio ssa /tgd. Therefore the fluid limit of each individual
CTRW is invariant under the scale transformation

hg,t,a,b,sj → hg,t8,a,b,s8j, s49d

if it holds that

fs8/sga = ft8/tgg. s50d

Therefore, as long as the temporal and spatialessentialdy-
namics of each individual CTRW remains unchangedsby
essential, we meana ,g andbd, it is always possible to res-
cale the temporal and spatial scale parameters of all CTRWs
swhich are associated to the temporal and spatial character-
istic scales of each transport mechanismd so that their res-
caled temporal scale parameters are all the same. On the
other hand, the value ofg cannot be rescaled in this fashion.
For this reason, consideration of several transport mecha-
nisms with different temporalessentialdynamics is not pos-
sible in this framework, not even in the fluid limit.

VI. CONCLUSIONS

In the previous sections we have shown that the fluid limit
of the extended CTRW/GME framework defined by Eq.s7d
sand its generalizations to a larger number of transport chan-
nelsd can indeed overcome some of the limitations of the
microscopic GME. In particular, we have shown that it can
account adequately for the interaction between multiple
transport mechanisms with disparate characteristic time
scales as long as they share the same essential temporal dy-
namics.

Also, we have shown that the resulting fluid equations
fEqs. s43d and s44dg are capable of implementing the
memory-through-profile mechanism into the dynamics in an
appropriate way, that remains active even when the indi-
vidual transport channels are Markovian. For this reason
alone, these equations suggest themselves as a valuable gen-
eralization of previous studies of SOC dynamics based on
some nonlinear versions of the standard diffusive equation
f41,55,56g. Otherwise, any approach that attempts to study
this problem by relying on linear FDEs must consider tem-
poral fractional derivatives to account for that memory ef-
fect. The problem thus becomes strongly non-Markovian
f15,34g.

Finally, note that Eq.s43d is useful to model particle
transport in systems in which critical thresholds exist that
can excite/damp instability-driven transport. In particular, we
would like to mention its application to turbulent transport in
plasmas magnetically confined in a tokamak or stellarator
f40,43g. In these works, it was shown that the combination of
nonlinearity and superdiffusive transport channels may pro-
vide us with explanations for the observation of anomalous
scalings in the global confinement time and nondiffusive
propagation of perturbations observed in the experiments for

many yearsf57–60g. It remains, however, to be seen how
this formalism can be extended to account also for energy
sheatd and momentum transport. Anomalous heat transport is
a topic that has seen renewed interest in recent timesf61,62g.
But its accommodation in this framework still requires a
much better understanding of fractional generalization of
Boltzmann equilibrium concepts than currently available. It
thus remains a very active field of workf63,64g.
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APPENDIX A: LEVY DISTRIBUTIONS

The Levy-Gnedenko family of pdf’s comprises all the
possible limit distributions that are strictly stable with re-
spect to thesum of N independent and identically distributed
(i.i.d.) random variablesf16,17g. The family is defined in
terms of three parameters, and its members are denoted by
Pa,b,ssyd. They can be defined in terms of their Fourier trans-
form or characteristic function ass0,aø2, ubuø1d f17g

Pa,b,sskd = expH− saukuaF1 − ib sgnskd tanSpa

2
DGJ .

sA1d

The three labels define the properties of each distribution.
First, b measures theasymmetryof the distribution. This
comes from the fact that

Pa,b,ssyd = Pa,−b,ss− yd. sA2d

It can very within −1øbø1 for all aÞ1, 2, for which only
b=0 is possible. Second,a gives the asymptotic behavior of
the distribution at largey. Thus for 0,a,2 all Levy distri-
butions exhibit heavy tails. Certainly, foraÞ1, it holds that

Pa,b,ssyd , HCas 1−b
2 dsauyu−s1+ad, y → − `

Cas 1+b
2 dsauyu−s1+ad, y → + `

J , sA3d

where the constant is given by

Ca =
sa − 1da

Gs2 − ad cosspa/2d
; sA4d

Gsxd is Euler gamma function. In the special casea=1, the
PDF decays asP1,0,ssyd,ss /pduyu−2. Finally s is called a
scale parameterbecause

Pa,b,ssayd = Pa, sgnsadb,uaussyd. sA5d

1. Extremal Levy distributions

A Levy distribution is calledextremal if its skewness
value is maximum:b= ±1 for aÞ1, 2. It is important to
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notice that, according to the previous equations, the power-
law decay is only observed in one tail in the case of all
extremal distributionssb= ±1d, the other decaying instead
exponentially. In the case of 1,a,2, b= +1 implies that
the exponential tail exists fory→−`, while b=−1 has a
right exponential tail fory→`. For 0,a,1 the extremal
distributions areone sidedf52g: they are defined only fory
.0 if b=−1 and fory,0 if b=1. In that case, the exponen-
tial tail is found in the limit y→0+ for b=−1, and fory
→0− for b=1. Their Laplace transform is given by

Pa,1,sssd = expS−
sa

cosspa/2d
saD . sA6d

2. Moments of Levy distributions

Another important property of the Levy distributions is
that all moments higher thana are infinite. That is, the mo-
menta ofPa,b,s verify

kuxupl = H`,p ù a

fca,bspdgpsp,p , a
J , sA7d

where the coefficient is not relevant for our discussionsit can
be found in Ref.f17gd. Thus only the Gaussian distribution
sa=2d has a finite variance. Furthermore, all distributions
with aø1 have also infinite first moments.

3. Explicit expressions of Levy distributions

There are only three Levy distributions for which an ana-
lytical expression existsf17g: The Cauchy distribution. Its
real space representation is

P1,0,ssyd =
s

psy2 + s2d
; sA8d

the Gauss distribution,

P2,0,ssyd =
1

2sÎp
e−y2/4s2

sA9d

snote that the relation ofs with the usual widthw of the
Gaussian is thus 2s2=w2d; and theLevy distribution,

P1/2,1,ssyd = S s

2p
D1/2 1

y3/2e−s/2y. sA10d

APPENDIX B: FRACTIONAL DIFFERENTIAL
OPERATORS

The Riemann-Liouville fractional derivative operators
can be defined explicitly by means of the integral operators
f19,21g:

aD
a

x fsxd ;
1

Gsp − ad
dp

dxpFE
a

x fsx8ddx8

sx − x8da−p+1G ,

bDa
x fsxd ;

− 1

Gsp − ad
dp

ds− xdpFE
x

b fsx8ddx8

sx8 − xda−p+1G .

sB1d

In these expressions,Gsxd is the usual Euler Gamma func-
tion, andp represents the integer part ofa. a sor bd is called
the startsendd point of the operator.

In the cases in which the start pointa or the end pointb
extend all the way to infinity, we will use the notation

daf

dxa ; −`Da
x fsxd;

daf

ds− xda ; +`Da
x fsxd. sB2d

These operators are particularly interesting since they satisfy,
under Fourier transformations, thatf19,21g

FFdaf

dxaG = s− iqdafsqd, sB3d

FF daf

ds− xdaG = siqdafsqd. sB4d

As a matter of fact, it is also possible to define them via Eqs.
sB3d and sB4d.

Another useful fractional operator is the so-calledRiesz
fractional derivative operatorf19,21g. It is defined as the
symmetrization:

da

duxua
; −

1

2 cosspa/2dF da

dxa +
da

ds− xdaG . sB5d

Thus, the Riesz operator verifies under Fourier transform that

FF daf

duxuaG = − uquafsqd, sB6d

which follows from Eqs.sB3d and sB4d thanks to the com-
plex identity

s− iqda + siqda = 2uqua cosSpa

2
D , sB7d

wherei =Î−1, the usual imaginary unit.
Finally, the Caputo fractional derivative operatoris de-

fined asf51g

dc
gf

dcx
g sxd ;

1

Gsg − pdE0

x dpf

dxpsx8d
dt

sx − x8dg+1−p , sB8d

wherep is the integer part ofg. The Caputo fractional de-
rivative is usually associated to derivatives in time. The need
for defining a different fractional derivative when time is
involved sinstead of using the Riemann-Lioville operator
with start point att=0d has to do with the fact that the
Laplace transform of the Caputo derivative verifiesf19,21g
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LF dc
gf

dct
g stdG = sgfssd − o

k=0

p−1

sg−k−1dkf

dtk
s0d, sB9d

which depends only on the initial values offstd and its inte-
ger derivatives. The Laplace transform of0D

g
t fstd depends

instead onfstd and the initial values of fractional derivatives

of lower order thatg, which do not have a clear physical
meaning in the case of real applicationsf19,21g. The relation
between Riemann-Lioville and Caputo derivatives is given
by f21g

0Dt
gfstd =

dc
gf

dct
g +

t−gfs0d
Gs1 − gd

. sB10d
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